MoS₂ Field-Effect Transistors: Dielectric, Contacts, and Scaling

Peide D. Ye

School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University

DRC 2D Workshop on 6/23/2013

Outline

- (1) Motivation
- (2) Fundamental properties of MoS₂ and others
- (3) MoS₂ based electronic devices
 - a. ALD high-k/MoS₂ integration
 - b. Metal contacts to MoS₂
 - c. Device scaling factors
 - d. Doping in MoS₂ FETs
 - e. Transport in MoS₂
- (4) Summary

Emerging Non-Si CMOS Research

More Non-Si Elements Introduced

Source: R. Chau, DRC 2006

MoS₂ - 2D Crystal beyond Graphene

Graphene has been actively researched for last few years
Zero band gap !

MoS₂ - 2D Crystal beyond Graphene
Large band gap ~1.2 eV-1.8 eV
First MOSFET Jan 2011

Single layer MoS₂ MOSFET

- Mechanically exfoliated
- Mobility (200 cm²/Vs)*

nature

nanotechnology

- Mobility enhanced by ALD high-k
- Intrinsic direct bandgap for single layer
- Thermal stability up to 1100°C
- Thin transparent semiconductor

* See also Hone and Fuhrer Nat. Nanotechnol. 2013

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnol. 6, 147 (2011).

Applications of MoS₂

Integrated Circuits

H. Wang et al. Nano Lett 2012

Chemical Sensor

H. Li et al. Small, 2012

Photodetectors

O. Lopez-Sanchez et al, Nat. Nanotechnol. 2013 Non-volatile Memory

S. Bertolazzi et al, ACS Nano 2013

(1) Dielectric (2) Contact Resistance (3) Channel Mobility

Ex-situ ALD high-k on 3D substrates vs. 2D

ALD self-cleaning effect

2 ASM ALD Systems at Purdue

3D Semiconductors: Passivation >> Many works at Intel, IBM, SEMATECH, IMEC, AIST, Purdue, U. Tokyo, Stanford, MIT, UCB, UCSB, NUS, UT Austin, UT Dallas, many other universities

2D Semiconductors: No dangling bonds

Yoon et al. Nano Letters 2011

ALD Al₂O₃ Process with TMA and H₂O

TOMIC-LAYER DEPOSITION provides one means for coating a semiconductor wafer with a high-k aluminum oxide insulator. The benefit of this technique is that it offers atomic-scale control of the coating thickness without requiring elaborate equipment. 1. Apply the gas trimethyl 2. Apply water vapor, which aluminum, which reacts with the reacts with the adhered hydroxyl groups attached to the trimethyl aluminum, forming a surface of the wafer, creating thin coating of aluminum oxide. a one-molecule-thick veneer. The repeated Water vapor application of trimethyl Trimethyl aluminum Methane by-product aluminum and water vapor in alternating steps serves to build up the insulator into a many-atom-thick layer (shown schematically here as just a thin vertical slice).

Peide D. Ye, IEEE Spectrum Sept. 2008

ALD Cannot Simply Grow on Graphene

If we do not have dangling bonds....

No Al₂O₃ on

basal plane

the graphene case...

Al₂O₃ on edges

Y. Xuan et al. APL 2008

ALD on MoS₂ 2D Crystal

Graphene

MoS₂

Q: Can we realize ALD growth on other 2D crystals?

ALD on MoS₂ 2D Crystal

ALD on h-BN and MoS₂ 2D Crystal

ALD on h-BN and MoS₂ 2D Crystal

Lennard-Jones Potential Model

$$V_{LJ} = 4\varepsilon \qquad \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
$$= \varepsilon \left[\left(\frac{r_m}{r}\right)^{12} - 2\left(\frac{r_m}{r}\right)^{6} \right]$$

ALD on h-BN and MoS₂ 2D Crystal

Ab initio DFT calculations:

Han Liu et al. APL 100, 152115 (2012)

ALD high-k/MoS₂ dual-gate MOSFET

Few-layer MoS₂

Han Liu et al. IEEE EDL 33, 546 (2012)

0.0

ALD high-k/MoS₂ dual-gate MOSFET

Low Work-function Metal (Ti) for MoS₂ NFET

Drain current ~ 300 mA/mm starts encouraging as transistors

MoS₂ MOSFET Contacts

Adam Neal et al. DRC 2012

R_c of MoS₂ MOSFETs by TLM

Contact Resistance: 5 Ω·mm (too large!)

Han Liu et al. ACS Nano 6 (10) 8563-8569, 2012

Metal Contacts on MoS₂

I. Popov et al, PRL 2012

S. Das et al, Nano Lett. 2012

Much more work on contact engineering is needed: $R_c < 0.1 \Omega \cdot mm$ at least For ITRS 10nm $\rho_c = 1 \times 10^{-9} \Omega \text{ cm}^2$

Tunneling Barrier on MoS₂

J.-R. Chen et al, Nano Lett. 2013

Metal contacts on WSe₂

Different material sources Different laboratories Different students Different time

Same starting materials Hundreds of devices

W. Liu et al, Nano Lett. 2013

MoS₂: CVD Synthesis

Direct Sulfurization of Mo layer

Y. Zhan et al, Small, 8, 966 (2012)

Sulfurization of Mo Compound (NH₄)₂MoS₄

K.K. Liu et al, Nano Lett. 12, 1538 (2012)

Sulfurization of MoO₃

Y.H. Lee et al, Adv. Mater. 24, 2320(2012)

CVD Monolayer MoS₂

Optical Micrograph

Atomic Force Microscope

H. Liu et al. Nano Lett., 13, 2640 (2013)

In collaborations with Jun Lou and P.M. Ajayan's groups at Rice University

Transistor: Output Behavior

L_{ch}=100 nm

The difference between Top/Back Gate modulation mostly comes from R_c

H. Liu et al. Nano Lett., 13, 2640 (2013)

Field-Effect Mobility

$$g_m = \frac{\partial I_{ds}}{\partial V_{gs}} = \mu_{FE} C_{ox} \frac{W}{L} V_{ds}$$
$$u' = \mu \left(\frac{R_{ch}}{R_{tot}}\right)^{-1} = \mu \left(1 - \frac{2R_c}{R_{tot}}\right)^{-1}$$

L _{ch}	μ _{FE,mean} (cm²/V·s)	μ _{FE,max} (cm²/V·s)		
100 nm	6.10	8.82		
200 nm	7.71	14.8		
500 nm	12.6	21.6		
1 µm	13.0	20.6		

MoS₂ MOSFET Length Scaling

H. Liu et al. ACS Nano, 6, 8563 (2012)

MoS₂ MOSFET Length Scaling

Evident short-channel effects at 12nm thick MoS₂ and L_{ch}=50nm

MoS₂ MOSFET Length Scaling

MoS₂ MOSFET Width Scaling

Han Liu et al. IEEE EDL 33 (9) 1273 (2012)

MoS₂ MOSFET Width Scaling

MoS₂ MOSFET Width Scaling

D-mode to E-mode transition by simple width trimming

Han Liu et al. IEEE EDL 33 (9) 1273 (2012)

Chemical Doping on 2D Crystals

Gaseous Doping (NO₂)

Solid Doping (K)

WSe₂

H. Fang et al. Nano Lett 2012H. Fang et al. Nano Lett 2013

MoS₂ Molecular Doping

Strong n-type dopant: Polyethyleneimine (PEI)

Submitted to IEEE EDL

MoS₂ Molecular Doping

MoS₂ Molecular Doping

Electron Phase Coherence in MoS₂

$$\Delta \sigma = \sigma(B) - \sigma(B = 0) = \alpha \frac{e^2}{4\pi^2 \hbar} F\left(\frac{B}{B_{\phi}}\right) \qquad L_{\phi} \sim 50 \text{nm}$$
$$F(z) = \psi \left(\frac{1}{2} + \frac{1}{z}\right) - \ln(z), \qquad B_{\phi} = \frac{\hbar}{4eL_{\phi}^2} \qquad \mathsf{T}=400 \text{mK}$$

Hikami et al. PTP 63 707 (1980), Kawaguchi et al. JPSJ 48 699 (1980) Ye, J.T. et al. Science 338 1193–1196 (2012)

L_{ϕ} vs. Temperature

 L_{ϕ} decreases as $T^{-1/2}$

Indicates electron-electron scattering responsible for dephasing

MoS₂ Superconductivity

Maximum T_c~11K n~1.3 \times 10¹⁴ cm⁻² via ionic liquid gating

Taniguchi et al. APL 101, 042603, (2012). Ye, J.T. et al. Science 338 1193–1196 (2012)

Spin-Valley coupling in MoS₂

Bulk TMD unit cell

spin orbit coupling + broken inversion symmetry for odd layer number

Monolayer TMD low-energy band structure large valence band spin splitting

graphics from Xiao et al.

	MoS ₂	MoSe ₂	WS ₂	WSe ₂	III-V's
Predicted monolayer spin splitting from [1]	148 meV	183 meV	426 meV	456 meV	Typically <30 meV

Spin scattering requires intervalley scattering

Enhanced spin lifetime predicted [2]

[1] Zhu et al. Phys. Rev. B 84, 153402 (2011)[2] Xiao et al. Phys. Rev. Letters 108, 196802 (2012)

Optically induced valley polarization in MoS₂

Figure from Mak et al.

Valley polarization induced by optical pumping with circularly polarized light in monolayer MoS₂

Hole spin-valley lifetime >1ns observed

Mak et al. *Nat. Nanotechnol.* 7, 494–498 (2012) Zeng et al. *Nat. Nanotechnol.* 7, 490–493 (2012) Cao et al. *Nat. Commun.* 3, 887 (2012)

Spin-orbit and Intervalley scattering in MoS₂

 $0 < \alpha < 2$ $\downarrow \implies \Delta \sigma = n_s \frac{e^2}{4\pi^2 \hbar} \begin{pmatrix} F\left(\frac{B}{B_{\phi} + B_{so}}\right) + \\ -\frac{1}{n_s}\left(F\left(\frac{B}{B_{\phi}}\right) - F\left(\frac{B}{B_{\phi} + 2B_{so}}\right)\right) \\ Weak Spin Scattering \\ Weak Spin Scattering \\ L_{so} \text{ as high as 500nm, T=400mK} \\ \end{pmatrix} = \frac{\hbar}{4eL_*^2}, \quad * = \phi, so$

Fukuyama PTPS 69 220 (1980), Lu et al. PRL 110, 016806 (2013)

Low temperature MoS₂ Mobility

μ_h decreases as $T^{-\gamma} \gamma \sim 1.5$, T=10K to 60K

 μ_H >300 cm²/Vs at LT

Adam T. Neal et al. submitted to ACS Nano Kaasbjerg et al. *PRB*, *85*, 115317 (2012). Kaasbjerg et al. *arXiv:1206.2003v1* (2012).

Hall Factor of MoS₂

Summary

- 1) We demonstrated direct ALD high-k integration on MoS₂ and other 2D crystals.
- 2) Low work-function metals, i.e. Ti, lead to highperformance MoS₂ MOSFETs.
- 3) We studied vertical layers (CVD monolayer), channel length and channel width scaling (down to 50-60nm). We observe a D-mode to E-mode transition by scaling width, meanwhile length scaling shows dominate contact resistance.
- 4) Hall Factor ~2.4, T=290K, multilayer MoS₂. Needed for accurate determination of drift mobility from Hall effect
- Electron spin orbit scattering length L_{so} as high as 500nm in few layer MoS₂, indicating potential for spintronics applications.

Acknowledgement

Purdue University: Han Liu, Adam Neal, Yuchen Du, Mengwei Si, Jiangjiang Gu (Intel)

Rice University: Sina Najmaei, Pulickel M. Ajayan, Jun Lou

